Adaptive Quasiconformal Kernel Metric for Image Retrieval
نویسندگان
چکیده
This paper presents a new approach to ranking relevant images for retrieval. Distance in the feature space associated with a kernel is used to rank relevant images. An adaptive quasiconformal mapping based on relevance feedback is used to generate successive new kernels. The effect of the quasiconformal mapping is a change in the spatial resolution of the feature space. The spatial resolution around irrelevant samples is dilated, whereas the spatial resolution around relevant samples is contracted. This new space created by the quasiconformal kernel is used to measure the distance between the query and the images in the database. An interesting interpretation of the metric is found by looking at the Taylor series approximation to the original kernel. Then the squared distance in the feature space can be seen as a combination of a parzen window estimate of the squared Chi-squared distance and a weighted squared Euclidean distance. Experimental results using real-world data validate the efficacy of our method.
منابع مشابه
Adaptive Quasiconformal Kernel Fisher Discriminant Analysis via Weighted Maximum Margin Criterion
Kernel Fisher discriminant analysis (KFD) is an effective method to extract nonlinear discriminant features of input data using the kernel trick. However, conventional KFD algorithms endure the kernel selection problem as well as the singular problem. In order to overcome these limitations, a novel nonlinear feature extraction method called adaptive quasiconformal kernel Fisher discriminant ana...
متن کاملAdaptive quasiconformal kernel discriminant analysis
Kernel discriminant analysis (KDA) is effective to extract nonlinear discriminative features of input samples using the kernel trick. However, the conventional KDA algorithm endures the kernel selection which has significant impact on the performances of KDA. In order to overcome this limitation, a novel nonlinear feature extraction method called adaptive quasiconformal kernel discriminant anal...
متن کاملA Semi-Supervised Metric Learning for Content-Based Image Retrieval
In this paper, the authors propose a kernel-based approach to improve the retrieval performances of CBIR systems by learning a distance metric based on class probability distributions. Unlike other metric learning methods which are based on local or global constraints, the proposed method learns for each class a nonlinear kernel which transforms the original feature space to a more effective on...
متن کاملMultiple Kernel Learning via Distance Metric Learning for Interactive Image Retrieval
In this paper we formulate multiple kernel learning (MKL) as a distance metric learning (DML) problem. More specifically, we learn a linear combination of a set of base kernels by optimising two objective functions that are commonly used in distance metric learning. We first propose a global version of such an MKL via DML scheme, then a localised version. We argue that the localised version not...
متن کاملKernel-based distance metric learning for content-based image retrieval
For a specific set of features chosen for representing images, the performance of a content-based image retrieval (CBIR) system depends critically on the similarity or dissimilarity measure used. Instead of manually choosing a distance function in advance, a more promising approach is to learn a good distance function from data automatically. In this paper, we propose a kernel approach to impro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2001